
3/22/2020

1

Chapter # 2
Lexical Analysis

Dr. Shaukat Ali

Department of Computer Science

University of Peshawar

Role of Lexical Analyzer
 The main task of lexical analyzer is to read

source program as file of characters and
produce as output a sequence of tokens that the
parser uses for syntax analysis.

Lexical
Analyzer

Parser

Source
Program

Token

Get Next
Token

Symbol
Table

3/22/2020

2

Role of Lexical Analyzer
 In addition of creation of tokens, some other

lexical analysis tasks are:

Stripping out from the source program
comments and white spaces in the form of
blanks, tabs and newline characters.

Correlating error messages from the compiler
with the source program.
 The lexical analyzer keep track of the number of

newline characters seen, to that a line number can
be associated with an error message.

Issues of Lexical Analysis
 There are several reasons of separating

analysis phase of compile into lexical and
syntax:

Simplicity:
 Separation of lexical and syntax analysis allows us

to simplify these phases.

 For example, a parser containing the convention
for comments and white spaces is significantly
more complex than one that can assume
comments and white spaces have already been
removed by a lexical analyzer.

3/22/2020

3

Issues of Lexical Analysis
Efficiency:

 A large amount of time is spent reading the source
program and partitioning into tokens.

 Separate lexical and syntax analyzer working in
parallel (at the same time, lexical analyzer creating
tokens and syntax analyzer organizes into parse
trees) can significantly improve the performance.

Portability:
 Mostly the lexical analysis phase is different for

different languages and other phases are almost
the same.
 Because different characters have different meaning in

different languages.

Issues of Lexical Analysis
 Therefore, for a new language we may only require

to construct the lexical analyzer and the rest of the
phases of the other languages can be attached to
it.

 To construct a compiler for C++ language we only have
to develop the lexical analysis phase and use the other
phases of pascal language.

Lexical Analysis Lexical Analysis

Pascal C++

Other Phases

3/22/2020

4

Token, Pattern and Lexeme
 Token:
The sequence of characters having a

collective meaning is called token.
A token represents a class in the vocabulary

of a language and is an indivisible lexical unit.
 Pattern:
A token represents a set of strings in the

input. This set of strings is describe by a rule
called pattern associated with token.

The pattern is said to match each string in the
set.

Token, Pattern and Lexeme
 Lexeme:

The sequence of characters in the soruce
program that is matched by the pattern for a
token.

Consider the Pascal statement:

const pi = 3.1416;
 Here pi is the lexeme for the token “identifier”.

3/22/2020

5

Token, Pattern and Lexeme

Terminology
 Symbol

 It is an abstract entity having some meaning
 Example are letter digits etc

 Alphabets

A finite non-empty set of symbols from which
string are constructed. It is denote by Greek
letter Ʃ

Example

Ʃ = {a, b, c, ……,z, A, B, C, …., Z}

Ʃ = {0, 1, 2, ….., 9}

3/22/2020

6

Terminology
 String

 It is a meaningful finite stream and sequence of
characters matched by a pattern

 String is made over alphabet of a language

 Each language has a finite of set of strings

 Example Salary, Bonus, Rollno are string made over
Ʃ = {a, b, c, ……,z, A, B, C, …., Z}

 Length of a String

 Number of characters/symbols in a string

 Example length of string shaukat is 7 and denoted by
|7|.

 Empty String or Null String

 String with no character/symbol and denote by ג

Terminology
 Prefix of String

A part of a string which is obtained by zero or
more trailing characters/symbols for a string

Example prefix of string “apple” is apple, appl,
app, ap etc.

 Suffix of String

A part of a string which is obtained by deleting
zero or more leading symbols for a string

Example of string “apple” is apple, pple, ple,
le etc.

3/22/2020

7

Terminology
 Substring

Any string obtained by deleting a prefix or
suffix from a string is called substring

Example, substring of “apple” is ppl etc.

 Proper prefix, suffix, or substring

A proper prefix, suffix or substring is that part
“x” of the string “s” which is a prefix, a suffix or
substring of string “s” such that x ≠ s

 Subsequence

A string formed by deleting zero or more not
necessarily contiguous symbols from string is
call subsequence

Terminology
 Language

A set of strings defined over set of alphabet is
called a language

 Empty Language

The language without any string is called
empty language

 Finiteness of Language

 In terms of number of words it is finite

 Infiniteness of Language

 In terms of sentences it is infinite

3/22/2020

8

Terminology
 Types of Language

Natural Languages
 Example, English, Urdu, Pushto etc.

 Flexible --- tolerate ambiguity because of human
intelligence

 Infinite set of words and rules cannot be stated
explicitly ---- also called informal language

Artificial Languages
 Example, C++, Java etc.

 Inflexible --- strict rules and procedures

 Finite set of words and rules stated explicitly ---
also called formal languages

Terminology
 Defining Languages

Set Notation

Recursive Definition

Regular Expression

3/22/2020

9

Set Notation
 The language is represented to be a set of

strings

 They can either tell us how to test a string of
alphabet letters that we might be presented with to
see if it is a valid word

 They can tell us how to construct all the words in
the language by some clear procedure

Set Notation
 Let Σ = {x} be an alphabet.

We can define the language by saying that any
nonempty string of alphabet characters is a word.

L = { x xx xxx xxxx … }

Or to write it in an alternative form.

L = { xn for n = 1 2 3 … }.

 Similarly a language containing words of odd number
of characters is.

L2 = { x xxx xxxxx xxxxxxx …}

L2 = { xodd }

L2 = { x2n-1 for n = 1 2 3 … }.

3/22/2020

10

Recursive Definition
 A mathematical method for defining a set of new

language.

 A recursive definition is normally a three-step process.

 First, we specify some basic objects in the set.

 Second, we give rules for constructing more object in
the set from the ones we already know.

 Third, we declare that no object except those
constructed in this way (by First and Second) are
allowed in the set.

 This is called recursive because rules for defining
objects calls themselves again and again.

Recursive Definition
 To define the set of positive EVEN integers.

 One standard way of defining this set is:

EVEN is the set of all positive whole numbers divisible by 2.

 Another way of defining this set is:
EVEN is the set of all 2n where n = 0, 1, 2, 3, ----

 By using recursive definition.
 The set EVEN is defined by these three rules.

 Rule 1: 0, 2 are in EVEN. (Defining basic object in the set.)

 Rule 2: if x is in EVEN, then so is x+2.(More objects.)

 Rule 3: The only elements in the set EVEN are those that
can be produced from the two rules above.

 The last rule above is completely redundant.

 There is no need of it, because the result can be obtained from
the above two rules.

 Here we define EVEN in terms of previously known elements of
EVEN.

3/22/2020

11

Example
 Suppose that we want to prove that 14 is in the set EVEN.

 By using first definition, we divide 14 by 2 and find that there is no
remainder, therefore it is in EVEN set.

 By using second definition, we have to come up with the number .i.e. 7
and then, since 14 = (2)(7), therefore it is in EVEN set.

 By using recursive definition is a lengthier process.
 By Rule1, we know that 2 is in EVEN.

 By Rule2, we know that 2+2=4 is in EVEN.

 By Rule2, we know that 4+2=6 is in EVEN. (4 has been shown in EVEN).

 By Rule2, we know that 6+2=8 is in EVEN. (6 has been shown in EVEN).

 By Rule2, we know that 8+2=10 is in EVEN. (8 has been shown in EVEN).

 By Rule2, we know that 10+2=12 is in EVEN. (10 has been shown in EVEN).

 By Rule2, we know that 12+2=14 is in EVEN. (12 has been shown in EVEN).

 This process is pretty horrible, it takes a lengthy time (greater number of
steps) to find an object belongs to or not.

Regular Expression.
 Regular expression can be used to specify the

structure of tokens used in the programming
language.

 Regular expressions defines the patterns for the
tokens.

 When comparing this pattern against a string, it'll
either be true or false.

 The set of string describe by a regular
expression is called set and the language
describe by regular expression is called regular
language.

3/22/2020

12

Regular Expression.
 Example: identifier – letter followed by zero or

more letters or digits

 Let ∑ = { Letter, Digit }
 Letter = { A, B, C, ----, Z }

 Digit = { 1, 2, 3, 4, ----, 9 }

Then the regular expression will be:

Letter (Letter|Digit)*

Regular Expressions Operator.
X followed by YX Y concatenation

X or Y (Alternative)X | Y or X + Y Alternation

Zero or more occurrences

of X

X * Kleene closure

One or more occurrences
of X

X + Positive Closure

Used for grouping (as in

programming

languages)

(X) Grouping

3/22/2020

13

Precedence for RE Operators

 Closure have higher precedence over concatenation and
alternation.

 Concatenation have higher precedence over alternation.

 Alternation have the lowest precedence.

Example
 Suppose that we have set of alphabets.

∑ = { a, b }
 Language that could be describe by using the

alphabets is as:
L = { All words of the form one a followed by any number of b’s}

 Therefore the language can be written as:
L = { a, ab, abb, abbb, abbbb, ---- }

 Regular Exression for this language would be:
L = language (a b*)

Or simply.

a b*

3/22/2020

14

Example
 Describe the language defined by the regular

expression.
ab*a

 The languge will be:
L = { all words of a’s and b’s that have at least

two letters, that begin and end with a’s }
 Similarly words in the language will be:

L = { aa, aba, abba, abbba, abbbba, ---- }

Example
 Consider the alphabet ∑ = { a, b, c } and the

language is :

L = { a, c, ab, cb, abb, cbb, abbb, cbbb, abbbb,

cbbbb }

L = { All words of a’s, b’s and c’s that either
starts with a or c followed by any number
of b’s}

RE will be:

(a | c) b* or (a + c) b*

3/22/2020

15

Example
 Write RE that describe the language of all words

that have exactly two a’s.

b* a b* a b*

 Write RE that describe the language of all words
that have at least one a and at least one b.

(a | b)* a (a | b)* b (a | b)*

((a | b)* a (a | b)* b (a | b)*) |

((a | b)* b (a | b)* a (a | b)*)

RE examples
 Write RE that describe the language of all words

that have odd number of a’s.

b*ab*(ab*ab*)*

 Write RE that describe the language of all words
that have substring with ab.

(a|b)*ab(a|b)*

3/22/2020

16

RE Exampels
 Write RE that describe the language of all words

that have even number of a’s.

(b|ab*ab*)*

 Write RE that describe the language of all words
that have either the second or third position form
the end is a.

((a + b)∗a(a + b)) + ((a + b)∗a(a + b)(a + b))

Regular Expressions Equivalences
 Two regular expressions R1 and R2 are equivalent if the

language defined by R1 (i.e., the set of strings generated
by regular expression R1) is equal to the language
defined by R2.

 To prove equivalences for regular expressions, we use
containment proofs from set theory.

That is, if S1 is the set of strings generated by
regular expression R1, and S2 is the set of
strings generated by regular expression R2.

We must prove that S1€ S2 and S2 € S1.

Both directions are necessary to prove
equality of sets.

3/22/2020

17

Example
 Let ∑ = { a, b }

S1 = { a, b, aa, bb, ab, ba }
 Its RE will be:

R1 = (a | b)+

S2 = { a, b, aa, bb, ab, ba }
 Its RE will be:

R2 = (a | b) (a | b)*

As it is clear now that:
S1 € S2 and S2 € S1

Therefore:

R1 = R2

Regular Definitions
 For notational convenience, we may wish to give names

to regular expressions and use these names in other
regular expression as if they were the symbols.

 If ∑ is an alphabet of basic symbols, then a regular
definition is a sequence of definitions of the form:

d1 r1

d2 r2

dn rn

Where each di is a distinct name and each ri is a
regular expression over the symbol in ∑.

3/22/2020

18

Regular Definitions
 For example, an identifier is a set of strings of

letters and digits beginning with a letter. Here is
a regular definition for this set:

letter A | B | ---- | Z | a | b | ---- | z

digits 0 | 1 | ------ | 9

id letter (letter | digits)*

Regular Definitions
 Unsigned numbers are strings such as 5280,

39.37, 6.336E4 or 1.894E-4. The regular
expression for it using regular definitions will be
as:

digit 0 | 1 | ---- | 9

digits digit digit*

optional_fraction . Digits | λ

optional_exponent (E (+ | - | λ) digits) | λ

num digits optional_fraction optional_expoent

3/22/2020

19

Recognition of Tokens
 After the tokens have been specified, they need

to be recognized now.
 A flowchart called transition diagram can be

used to recognize tokens as well as Finite
Automata.

 Transition diagram represents the actions that is
taken place when the lexical analyzer is called
by the parser to get the next token.
We move from position to position in the

diagram as characters are read to keep track
of the information about the characters that
are seen as the input is seen.

Recognition of Tokens
 Positions in the diagram are shown as circles called

states and these states are connected by arrows called
edges.

 Edges that are leaving the state “s” have labels
(characters) indicates the input character that can next
appear after the diagram has reached state “s”.

 One state is labeled the start state; it is the initial state of
the diagram where control resides when we begin to
recognize a token.

 On entering a state we read the next character, if there is
an edge from the current state whose label matches this
input character, we then go to the state pointed to by the
edge.

3/22/2020

20

Recognition of Tokens
 One of the states is called the accepting state

(final state).

 An accepting state is represented by a double
circle and represents a state where a token has
been recognized in the input stream.

 If the input stream does not proceeds to an
accepting state, the token is not recognized and
lexical analyzer displays an error message.

 For example, the transition diagram for the
patterns >= and >- will be:

Recognition of Tokens

 Here 0 is the start state.
 In state 0 we read the next input character, the

edge labeled > from state 0 is to be followed to
state 1 if this input character is >.

 Otherwise we have failed to recognize either >=
or >-

3/22/2020

21

Recognition of Tokens
 On reaching state 1 we read next character, the

edge labeled = from state 1 to 2 is to be followed
if this input character is =.

 The edge labeled – from state 1 to 3 is to be
followed if this input character is -.

 If the input character at state 1 is neither = or -,
an error message has to be produced.

 States 2 and 3 are the accepting states,
indicating that upon reaching these states token
would be been identified.

 End of Chapter # 2

